A Mitogen-Activated Protein Kinase Tmk3 Participates in High Osmolarity Resistance, Cell Wall Integrity Maintenance and Cellulase Production Regulation in Trichoderma reesei

نویسندگان

  • Mingyu Wang
  • Qiushuang Zhao
  • Jinghua Yang
  • Baojie Jiang
  • Fangzhong Wang
  • Kuimei Liu
  • Xu Fang
چکیده

The mitogen-activated protein kinase (MAPK) pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, 'budded' hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest that T. reesei is evolved to favor solid state growth, bringing up the proposal that the submerged condition normally used during investigations on fungal physiology might be misleading.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of the role of a MAP kinase Tmk2 in Hypocrea jecorina (Trichoderma reesei)

Despite the important role of MAPKs in signal transduction, their functions in the cellulase hyper-producing filamentous fungus Hypocrea jecorina haven't been studied except for the Hog1-like Tmk3. In this work, we constructed and explored the features of H. jecorina Δtmk2 to identify the role of this Slt2-homologous Tmk2. It is suggested from the results that Tmk2 is involved in cell wall inte...

متن کامل

Functional characterization of the upstream components of the Hog1-like kinase cascade in hyperosmotic and carbon sensing in Trichoderma reesei

Background: Trichoderma reesei holds a high capacity for protein secretion and represents the most important cellulase producer in industry. However, the external signal sensing and intracellular signal transduction during cellulose induction remain unclear. As one of the most pervasive signal transduction pathways in all eukaryotic species, the mitogen-activated protein kinase (MAPK) pathway a...

متن کامل

Role of Trichoderma reesei mitogen-activated protein kinases (MAPKs) in cellulase formation

BACKGROUND Despite being the most important cellulase producer, the cellulase-regulating carbon source signal transduction processes in Trichoderma reesei are largely unknown. Elucidating these processes is the key for unveiling how external carbon sources regulate cellulase formation, and ultimately for the improvement of cellulase production and biofuel production from lignocellulose. RESUL...

متن کامل

Cellulase Production by Trichoderma reesei using Sugar Beet Pulp

Cellulase production by the fungus Trichoderma reesei was studied using sugar beet pulp (SBP) as a substrate. The subculture medium was a salt solution consisting of KH2PO4, CaCl2, etc. Fungal cells were sub-cultured in an orbital shaker (180 rpm) at 30°C for 1-2 generations (two days for each generation) and were then used as an inoculum. Exponential cells were inoculated into a medium contain...

متن کامل

The G-alpha protein GNA3 of Hypocrea jecorina (Anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light.

Although the enzymes enabling Hypocrea jecorina (anamorph Trichoderma reesei) to degrade the insoluble substrate cellulose have been investigated in some detail, little is still known about the mechanism by which cellulose signals its presence to the fungus. In order to investigate the possible role of a G-protein/cyclic AMP signaling pathway, the gene encoding GNA3, which belongs to the adenyl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013